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We consider the instability of the steady, axisymmetric base flow past a sphere, and a 
circular disk (oriented broadside-on to the incoming flow). Finite-element methods are 
used to compute the steady axisymmetric base flows, and to examine their linear 
instability to three-dimensional modal perturbations. The numerical results show that 
for the sphere and the circular disk, the first instability of the base flow is through a 
regular bifurcation, and the critical Reynolds number (based on the body radius) is 105 
for the sphere, and 58.25 for the circular disk. In both cases, the unstable mode is non- 
axisymmetric with azimuthal wavenumber m = 1.  These computational results are 
consistent with previous experimental observations (Magarvey & Bishop 1961 a, b ;  
Nakamura 1976; Willmarth, Hawk & Harvey 1964). 

1. Introduction 
In the case of a circular cylinder in an uniform external flow, the steady two- 

dimensional separated flow field at low Reynolds number Re (which consists of two 
symmetric recirculating eddies behind the body) eventually becomes unstable to 
infinitesimal perturbations at sufficiently large Re. The experimental results of 
Provansal, Mathis & Boyer (1987) and Strykowski & Sreenivasan (1990) indicate that 
this instability appears as a two-dimensional asymmetric low-frequency oscillatory 
motion of the wake region downstream from the cylinder. The numerical computations 
of Jackson (1987) also show a two-dimensional Hopf bifurcation in the branch of 
steady two-dimensional flows as Re is increased, and good agreement is obtained with 
the experimental values for the critical Re and the oscillation frequency at the onset of 
the instability. This instability is the first in the series of flow transitions as Re is 
increased, which at larger Re gives rise to periodic vortex shedding from the cylinder, 
and the formation of the well-known Karman vortex street. 

For axisymmetric bodies in a uniform external flow, the steady separated flow field 
at low Re consists of an axisymmetric, toroidal recirculation eddy behind the body. 
This flow also becomes unstable at sufficiently large Re, but there is less consensus on 
the details of the first instability in this case. In this work, we have numerically 
computed the details of the first instability of the steady axisymmetric flow past two 
bodies, viz. a sphere and a circular disk (oriented broadside-on to the incoming flow). 
Our results show a regular bifurcation in the branch of steady axisymmetric solutions 
as Re is increased, with the corresponding unstable mode being non-axisymmetric with 
azimuthal wavenumber m = 1. In addition, this instability appears in the near-eddy 
separated region of the flow immediately behind the body, rather than in the 
downstream wake. This is quite different from the analogous result in the two- 
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dimensional case mentioned above, but is consistent with the experimental observations 
in these flows geometries (Magarvey & Bishop 1961 a, b ;  Nakamura 1976; Willmarth, 
Hawk & Harvey 1964). In this paper these aspects are discussed, and a comparison to 
the previous relevant computational work (Kim & Pearlstein 1990) is carried out in the 
concluding section. 

The outline of this paper is as follows. In $2,  we describe the problem geometry, as 
well as the governing equations for the steady axisymmetric base flow, and for the 
evolution of small-amplitude perturbations to this base flow. In $3, we outline the mesh 
generation procedure. Section 4 contains the numerical results for the steady flow 
calculations (including the derivation of appropriate inflow and outflow boundary 
conditions for this problem). Section 5 describes the numerical methods used for 
computing the stability-determining eigenvalues from the perturbation equations, and 
presents the results of the stability analysis. Finally, as mentioned above, $6 compares 
our computational results with the relevant experimental and numerical work in this 
area. 

2. Problem formulation 
The incompressible Navier-Stokes equations are non-dimensionalized with the 

radius of the body as lengthscale, and the magnitude of the uniform upstream flow as 
the velocity scale, to obtain 

(2.1) 
aii 
at  
-+6.ViZ+Vj?--Re-'V*(ViZ) = 0, V-6 = 0, 

where ii(r, 8, z, t )  is the fluid velocity with components {I?,, Go, u",} in cylindrical 
coordinates, and p"(r, 8, z ,  t )  is the pressure. 

On the body surface denoted by q, the usual no-slip velocity boundary condition is 
used. For computational convenience, the body is assumed to be on the axis of an 
enclosing cylindrical tube of radius a b 1 (whose surface is denoted as x). The 
resulting geometry is shown schematically in figure 1 for the sphere. For sufficiently 
large a, this outer cylindrical surface is shown to have little influence on computational 
results (particularly for the relatively moderate values of Re of interest to us). 
Furthermore, for the computation of the base-flow solution in $4, the normal velocity 
and tangential vorticity components are taken to be zero on This inviscid boundary 
condition ensures that the body surface yI is the only source of vorticity, as would be 
the case for an infinite problem domain without the artificial outer cylindrical 
boundary. 

The steady axisymmetric base flow is denoted by { U(r, z), P(r, z)}, and satisfies the 
equations 

with U = 0 on .ul,. The stability of this base flow is examined by considering small non- 
axisymmetric perturbations, denoted by {u(r, 8, z, t),p(r, 8, z, t ) } ,  which satisfy the 
linearized perturbation equations 

U.VU+VP-Re- 'V . (VU)  = 0, V - U =  0, (2  * 2) 

(2.3) 
au 
at 
-+ U-Vu+u.VU+Vp-RRe-lV-(Vu) = 0, V - u  = 0, 

with u = 0 on q. The details of the remaining boundary conditions are discussed at the 
appropriate place in @4 and 5 below. 
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3. Mesh 
The solution of (2.2) and (2.3) requires the generation of two-dimensional grids in 

the (r,z)-plane, for the region exterior to the body bounded by the lines r = 0 and 
Y = a, for - 00 < z < a. For convenience in grid generation, this region is conformally 
mapped to the infinite uniform channel 0 d R < A,  - co < Z 6 + oc), where (R, Z )  
denote the coordinates in the mapped domain. Appropriate closed-form expressions 
for these conformal trnsformations are given in Fornberg (1991), and Natarajan, 
Fornberg & Acrivos (1993), which can be directly used for the case of the sphere and 
circular disk respectively. 

In order to obtain a finite domain Y for computational purposes, this infinite 
channel is truncated to the finite region 0 < R < A ,  Z ,  < Z d 2,. On this domain, a 
graded Cartesian product mesh consisting of N , x N ,  points is generated, and this 
graded mesh when transformed back to the original (r,z)  domain provides a high 
density of mesh points in the regions where large gradients in the flow solution are 
expected (particularly in the attached and separated boundary-layer regions, and in the 
trailing wake). Typical examples of the resulting computational grids are shown in 
figure 2 (a) for the sphere, and in figure 2 (b) for the circular disk. For the circular disk, 
there is a singularity in the vorticity field at the edge. The mesh generation procedure 
automatically provides a clustering of mesh points in the neighbourhood of this edge, 
which is very helpful in resolving the large solution gradients that are expected there. 

The boundary lines Z =  2, < 0 and Z =  2, > 0 in the mapped domain are 
transformed back into the flow inflow and outflow boundaries in the original ( I , z )  
domain, and the corresponding surfaces are denoted by and Yo respectively. The 
magnitudes of Z ,  and 2, should be chosen sufficiently large to capture all the essential 
details of the flow, whose variations occur primarily on the body scale and near wake. 
In this context, the specialized asymptotic inflow and outflow boundary conditions for 
the steady flow problem (described in $4) allow these boundary surfaces to be located 
closer to the body than would otherwise be possible, and therefore considerably reduce 
the computational effort required to obtain an accurately resolved solution on the body 
scale. 

4. Stationary problem 
In order to solve (2.2), the steady velocity and pressure fields are expanded in the 

form 

where { Ur,t, Uz, %, 4) are the unknown nodal values, and xi are respectively 
piecewise-continuous biquadratic and bilinear basis functions. The discretization uses 
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FIGURE 2. Computational mesh MI (see $4) generated as described in $3. Grid lines in the ( r ,  z)-plane 
for (a) the sphere, and (b) the circular disk. For clarity, only every second grid line is displayed. 

the Taylor-Hood isoparametric quadrangular element (Cuvelier, Segal & van 
Steenhoven 1986; Gunzburger 1989). Therefore, with the mesh parameters given in $2 
(and taking N ,  and N, to be odd), we have N = N,. x N, and M = $(Nr + 1) x i(N, + 1). 

After substituting (4.1) in (2.2), and using Galerkin's method followed by an 
integration by parts (Gunzburger 1989), we obtain 

[U.VU.$ie,- PV.($,e,)+Re-l(VU)T:V(#ie~)] dV 5, 
+ [Pn.q5,e,-Re-'VU.q5ie,.n]dS = 0 for i = 1 ,N;  e, = e,.,e,, (4.2) s, 

(V.U)XidV= 0 for i =  1,M, (4.3) s, 
where n = n,.e,.+n,e, is the outward directed normal to the boundary surface 9 
(where Y = Sp U .ul, u 8 u Yo). In component form, (4.2)-(4.3) can be written as 

+I dS=O for i =  1,N, (4.4) 
Y 

XidV= 0 for i =  1,M. 

The set (4.4)-(4.5) is subject to the no-slip boundary condition U,. = U, = 0 on Y: 
and the inviscid boundary condition U,. = aU,/ar = 0 on .4.,. The inflow and outflow 
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boundary conditions are implemented by adapting the techniques in Natarajan et al. 
(1993) to the present problem. We note, therefore, that sufficiently far upstream and 
downstream from the body, the steady flow is only slightly disturbed from the uniform 
free stream, and can be described by the Oseen linearization of the Navier-Stokes 
equations. For the axisymmetric flow, we have the stream function @ (where 
r U, = - a$/&, r U, 7 a$/ar) and the vorticity w = a U,/az - aU,/ar. In the far field, we 
can write y? = ir2+y?, w = 4, in terms of which the linearized Oseen equations are 
given by 

(4.7) 

The set (4.7H4.8) has an infinite number of eigenmodes satisfying the condition of 
vanishing normal velocity component at r = 0 and r = a.  These are of the form 

(4.9) 
where k ,  is the nth root of J,(ka) = 0, J ,  being the Bessel function of order 1, and 

(4.10) 
Here, the quantities p* and A* correspond to the spatial growth (or decay) rates of the 
irrotational and rotational modes respectively. From physical considerations, it is clear 
that the growing modes in the upstream and downstream directions must be excluded 
from the solution. In addition, sufficiently far upstream or downstream the solution 
will be dominated by the leading-order decaying eigenmode in (4.9). For example, in 
the upstream direction the rotational modes decay rapidly, and if 8 is located 
sufficiently far away the flow is essentially dominated by the leading-order irrotational 
eigenmode, and we have on this boundary 

4, = (A ,  epi + B, eAz z, rJ,(k, r), 4, = -Re B, eAi 'rJ,(k, r), 

p; = f k,, A; = $[Ref  (Re2 + 4k3;]. 

-- a u L p ; ( u z - l ) ,  P = - ( U , - l ) ,  
az 

in which the pressure far upstream ( z  --f - 00) has been set to zero. The surface integral 
in (4.4) on then becomes 

(n, - Re-lp: n,) + Re-' - + p: n, Ur + ( - nr + Re-',u: n,) U,] $i dS. (4.1 1) 

In contrast, the irrotational modes decay fairly rapidly in the downstream direction, 
and the far-field solution is eventually dominated by the leading rotational mode. 
Therefore, in the same way, if Yo is located sufficiently far away, we have 

(7 1 
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where A denotes the overall pressure difference ( A  < 0) between the far upstream and 
downstream regions. The magnitude of A is unknown (except in the case u + 00, when 
A +- 0), and as described below this quantity must also be determined as part of the 
overall solution procedure. The surface integral in (4.4) on Yo then becomes 

(A-Re-lh;)n,+Re-l U,+Re-'h;n, U, &dS. (4.12) 1 
The corresponding surface integrals in (4.5) are also transformed in a similar fashion, 
and these details are omitted here for brevity. Finally, the extra condition for 
determining A is obtained by noting that the overall pressure drop should be consistent 
with global mass flux conservation, i.e. the condition 

jyo [ U, n, + U, n,] dS  = +u2 (4.13) 

must be imposed on the computed flow solution. The condition (4.13), along with (4.6) 
ensures that the mass flux across any cross-sectional surface in the flow domain 
(including, in particular, the inlet surface Y;) is equal the value na2 corresponding to 
the uniform flow at z --f - co. 

The discrete form of (4.4H4.6) and (4.13) is obtained by evaluating the various 
integrals elementwise using a twelve-point Gaussian quadrature rule. Let X denote a 
vector of length 2N+ M ,  consisting of the velocity and pressure nodal unknowns. Then 
the combined system of equations (4.4)-(4.6) along with (4.13) can be solved by the 
quadratically convergent Newton iteration 

V x R l  V , R l  6X" R,(X", A") 
[V,R2 0 ] [ 6 A n ] = - [  R2(Xn) 1' (4.14) 

starting from a suitable initial guess, until the desired convergence is obtained. In 
(4.14), R ,  and R, are the discrete residual equations corresponding to (4.4b(4.6) and 
(4.13) respectively, and 6X" and &A" are the updates at each iteration step. An efficient 
numerical procedure for (4.14) is to first solve for Yl and Y2 from 

[V,R,] = -VA R , ,  [VXR,] yZ  = - R,. (4.15) 

Following this, the required solution updates are easily obtained from 

&A" = (R2-VxR, .  Y,)/(V,R,. Y,), 6X" = Y,+(6An)  x. (4.16) 

In practice, these iterations were terminated when the maximum pointwise value of the 
discrete residual dropped below in magnitude. The resulting solution was then 
used as a good initial guess for the convergence of the Newton iteration at a larger 
value of Re. 

The solution procedure outlined in (4.15)-(4.16) is more economical than the direct 
solution of (4.14) because the matrix V,R,  in (4.15) is banded for an appropriate 
lexicographical ordering of the grid points and unknowns in the finite-element mesh, 
whereas the extended matrix in (4.14) does not have this useful property. The required 
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Storage requirement 

Label Mesh Z,  Z ,  a steady problem stability problem 
Location of computational boundaries 

L1 135 x 37 -2.5 20 8 48 MB 394 MB 
L2 179 x 37 -7.5 40 8 63 MB - 
L3 157 x 45 -5.0 30 12 81 MB - 

-5.0 30 8 24 MB 246 MB MI 135 x 29 
M2 157 x 37 -5.0 30 8 56 MB 459 MB 
M3 179 x 45 -5.0 30 8 93 MB - 

Mesh refinement 

TABLE 1. Summary of computational mesh characteristics 

band LU factorization and triangular solves in (4.15) are performed using the 
DGBFA/DGBSL sequence in the LINPACK subroutine library. 

For the stability calculations in 4 5 ,  we are primarily interested in obtaining 
accurate steady base-flow solutions in the range 80 < Re < 120 for the sphere, and 
50 d Re < 70 for the circular disk. The flow quantities used to monitor convergence 
are the separated eddy length L, the stream function magnitude at the eddy centre $,, 
and the drag coefficient cd. The drag coefficient for the sphere is computed from 

and for the circular disk from 

(4.18) 

Various tests were performed, as described below, to check the convergence of the 
numerical procedure, and the overall solution correctness and accuracy. 

Table 1 shows three meshes L1, L2 and L3, which were used to study the effect of 
varying the location of the (artificially imposed) exterior boundaries on the solution 
accuracy. The extent of the inflow and outflow boundaries in L2 is larger by a factor 
of 2 than L1. In L3, these boundaries are located at the average of L1 and L2, while 
the extent of the radial boundary is increased by a factor of 1.5. In all cases, the density 
and distribution of mesh points in the computational grid is kept roughly constant. 
Table 2(a) shows that the primary flow quantities are in excellent agreement on all 
three meshes. 

Table 1 also shows the three meshes M1, M2 and M3 used for the mesh refinement 
study. The storage requirement for the problem on the finest mesh M3 is roughly twice 
that for M2, and four times that for M1. Table 2(b) shows that the primary flow 
quantities are in good agreement on all three meshes. Parenthetically, we note that the 
solution accuracy on the coarsest mesh M1 is somewhat better for the sphere than the 
circular disk, and this is expected because of the smoother nature of the flow solutions 
in the former case. 

Fornberg (1988) has computed the steady axisymmetric flow past a sphere for Re up 
to 2500, using finite-difference methods on the vorticity/streamfunction formulation of 
the Navier-Stokes equations. His results for Re = 50 (L  = 2.74, cd = 1.084), and for 
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Re Re 

FIGURE 3. Comparison of numerical results for cd from the steady flow calculations in 93 (denoted 
by x , with curve-fitted line also shown). The experimental results (denoted by V) are taken from 
tables in Roos & Willmarth (1971). (a) Sphere; (b) circular disk. 

(4 

Sphere 
R e =  80 100 120 80 100 120 80 100 120 

L1 3.48 3.85 4.14 0.029 0.041 0.054 0.88 0.79 0.72 
L2 3.49 3.86 4.15 0.029 0.041 0.054 0.88 0.79 0.72 
L3 3.49 3.86 4.15 0.029 0.041 0.054 0.87 0.78 0.71 
Circular disk 

R e =  50 60 70 50 60 70 50 60 70 
L1 4.07 4.41 4.62 0.178 0.215 0.255 1.31 1.21 1.14 
L2 4.08 4.41 4.63 0.178 0.216 0.256 1.31 1.21 1.14 
L3 4.09 4.44 4.71 0.175 0.215 0.252 1.27 1.19 1.12 

L - ~c ‘d  

L - 9, ‘d  

(b) 

Sphere 
R e =  80 100 120 80 100 120 80 100 120 

MI 3.49 3.86 4.13 0.029 0.042 0.054 0.88 0.79 0.72 
M2 3.48 3.85 4.13 0.029 0.042 0.054 0.88 0.79 0.72 
M3 3.48 3.85 4.14 0.029 0.041 0.054 0.88 0.79 0.72 
Circular disk 

M1 4.07 4.28 4.30 0.175 0.222 0.273 1.29 1.19 1.12 
M2 4.05 4.37 4.42 0.177 0.216 0.260 1.31 1.21 1.14 
M3 4.07 4.42 4.71 0.177 0.216 0.254 1.31 1.21 1.14 
TABLE 2. Convergence studies for steady, base-flow computations : (a)  Location of computational 

boundaries, (b) mesh refinement 

R e =  50 60 70 50 60 70 50 60 70 
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Re = 100 ( L  = 3.87, cd = 0.77) agree well with our present computations. This good 
agreement between our results is also found at much larger values of Re, which are 
however beyond the range of relevance to the stability calculations of the next section, 
and therefore not discussed further here. 

Figures 3 (a) and 3 (b) show the good agreement between our numerical results for cd 
and the experimental drag measurements for the sphere and circular disk (tabulated in 
Roos & Willmarth 1971). This comparison is only performed in the relevant range of 
Re where the experimental flow is also expected to be steady and axisymmetric. 

In summary, the various tests above confirm the correctness and accuracy of the 
steady base-flow computations. Finally, some representative stream function and 
vorticity contour results are shown in figures 4(a) and 4(b). In each case, the results 
shown bracket the critical value Re, at which the corresponding axisymmetric flow first 
becomes unstable (as shown in the next section). 

5. Stability problem 

pressure fields in (2.3) in the form 
Since the base flow is axisymmetric, we can expand the perturbed velocity and 

where j = 2/ - 1 ,  rn is the azimuthal mode number, and crm is the complex-valued 
growth (or decay) rate of the corresponding mode perturbation. These perturbed fields 
are physical quantities, and must be real-valued, so that u ( - ~ )  = U(m), p(-m) = p(”), and 
c - ~  = q (the overbar denotes the complex conjugate). 

Similar to the procedure in 54 for the discretization of the base flow, we expand 
( ~ ( ~ ) , p ( ~ ) }  in the form 

(5.2) 

(5.3) 

where {u$), u;?), u ~ ~ ) , p j ” ) }  are the unknown discrete nodal values of the mode 
perturbation. Substituting into (2.3), using Galerkin’s method followed by an 
integration by parts, we obtain 

IT[@+ U.Vu+u.VU .$ie-jmeek-pV.($ie-jmse,)+Re-l(Vu)T: V(q5ie-jmeek) dV 1 1 
[pn . e, - Re-IVu. ek - n] $i e-jme dS  = 0 +s, 

for i = l , N ;  m=-m,+co;  ek=er ,ee ,e , ,  (5.4) 

(V-u)Xie-jmodV= 0 for i = 1,M; rn = -00 ,  +a. (5-5) s, 
The equations (5.4)-(5.5) decouple for each value of m, so that the corresponding 

superscript on the dependent variables can be omitted without confusion, thereby 
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Re = 80 - 

Re = 120 

Re = 50 

1- 

Re = 70 

I- 
T 

FIGURE 4. Contours of stream function (upper half) and vorticity (lower half) for (a) the sphere with 
Re = 80, 120; (b) the circular disk with Re = 50, 70. Contour values are (0.2, 0, -0.05, -0.1, 
-0.2, +J for stream function and (-0.25, -0.5, -1.0, -2.0, -3.0) from vorticity. 
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considerably simplifying the notation below. Thus, writing out (5.4E(5.5) in 
component form, we obtain the following set: 

+ J9[pn,Qc-Re-1 (2 -nn,+-nZ az #t d S =  0 for i = I , N ,  (5.6) 1 1 

+ ~ ~ [ - R e ' ( ~ n , + ~ n , ) ~ , ] d S = O  for i =  1,N, (5.7) 

xidV= 0 for i = 1,M. (5.9) 

The no-slip boundary condition u, = uO = u, = 0 is used on q. On the inflow surface 
8, the velocity perturbation is set to zero. This is justified since even for very large Re 
(when the actual flow may be non-axisymmetric and time-dependent elsewhere), the 
upstream region of the flow is expected to be inviscid with little deviation there from 
the corresponding axisymmetric base-flow solution at that value of Re. On the surface 
q, the boundary condition u, = au,/ar = au,/ar was used. This is precisely the natural 
boundary condition on in (5.7) and (5.8). In practice, we have observed essentially 
unchanged results with a zero velocity perturbation boundary condition on Spz, and this 
is to be expected using the same physical reasoning as above for the inflow boundary 
condition. Similarly, on the surface Yo, we use the appropriate natural boundary 
conditions in (5.6H5.8), i.e. -pn+ Re-' a u / h  = 0, which is a widely used outflow 
boundary condition for the Navier-Stokes equations in the finite-element literature 
(Jackson 1987; Gunzburger 1989; Gresho 1991) although it does not have a specific 
physical interpretation. The boundary conditions used here are straightforward to 
implement, and by varying the size of the computational domain, can be shown to 
provide results of acceptable accuracy. As an aside, we note that the derivation of 
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suitable inflow and outflow boundary conditions for the time-dependent Navier-Stokes 
equations, or even their linearized form (2.3), paralleling the treatment in $4 for the 
steady problem, would be a most useful theoretical development. This detailed aspect 
has not been pursued in the present set of calculations (Hagstrom 1991 and Gresho 
1991 provide an entry into the literature on the implementation of outflow boundary 
conditions for the Navier-Stokes equations). 

The discrete form of (5.6)-(5.9) is obtained by evaluating the various integrals 
elementwise using a twelve-point Gaussian quadrature rule. Let Y denote a vector of 
length 3N+ M ,  consisting of the perturbation velocity and pressure unknowns. Then 
(5.6)-(5.9) can be written as the generalized matrix eigenvalue problem 

A Y =  aBY, (5.10) 

where A is a complex-valued, non-symmetric matrix, and B is a real-valued, symmetric 
matrix. The matrix B is equivalent to copies of the finite-element ‘mass’ matrix for the 
discretization, but is singular with M rows in it being identically zero (due to the 
absence of a time-derivative in the continuity equation). In addition, the homogeneous 
essential boundary conditions on the discrete perturbation vector Y are directly 
imposed in the discrete form (5. lo), by setting all the entries in the corresponding row 
of the matrices A and B to zero, except for the diagonal entry in A which is set to unity 
(this is seen to have the desired effect of forcing the corresponding nodal value in Y to 
zero). 

The linearized stability of the base flow at different Re can be determined from the 
eigenvalues a of (5.10). For sufficiently small Re, all eigenvalues have Re(a) < 0 so 
that the corresponding eigenmodes will decay. There is a critical value Re, at which the 
‘leading’ eigenvalue (i.e. the eigenvalue with the maximum real part) crosses the 
imaginary axis into the right half-plane, so that the corresponding eigenmode is 
linearly unstable. If the corresponding imaginary part of this leading eigenvalue is zero 
at Rec, then we have a regular bifurcation to a steady secondary solution. However, if 
it is non-zero, so that crossing occurs for a complex-conjugate pair of eigenvalues, then 
we have a Hopf bifurcation to a time-periodic secondary solution, whose frequency at 
the onset of this instability is determined by the magnitude of the imaginary part of the 
eigenvalue at this crossing. In either case, the spatial form of the bifurcating solution 
is determined by the eigenspace of the crossing eigenvalue (or conjugate pair of 
eigenvalues). 

The matrices A and B are banded for an appropriate lexicographic ordering of the 
grid points and unknowns in the computational mesh. Furthermore, in the present 
application, only the eigenvalues of (5.10) in the least stable region of the spectrum are 
of interest. A suitable numerical scheme is described in Natarajan (1992), which 
exploits the specific characteristics of these stability applications for efficiently 
performing the relevant eigenvalue computations. Briefly, a shift-and-invert trans- 
formation, with a designated complex shift A, is used to take (5.10) to the form 

K Z  (A - hB)-l BZ  = $2, (5.11) 

which is a standard eigenvalue problem for a complex, non-symmetric matrix K, whose 
eigenvalues ci are related to those of (5.10) by ci = l/(a-A). A restarted, iterative 
Arnoldi algorithm (Saad 1988) is then used to solve (5.11). The computationally 
expensive part of this algorithm is the matrix-vector products involving K, which can 
be efficiently carried out without explicitly forming K, by first performing the matrix- 
vector product with B, followed by forward and backward solves with the band 
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FIGURE 5 .  Illustration of shift selection procedure and eigenvalue convergence for the case Re = 100, 
m = 1 on the mesh MI. The numerals give the location of shifts and their sequence. The symbols are 
the corresponding converged eigenvalues at each shift denoted by the following sequence (1) + , (2) 
x , (3) 0, (4) 0, ( 5 )  A, (6) 7. In figures 5-7, only the computed eigenvalues with Im(u) 2 0 are 
shown. 

triangular factors of A - AB. The complex, band LU factorization and triangular 
solves required in this procedure are performed using the ZGBFA/ZGBSL routines in the 
LINPACK library. 

In this scheme, the eigenvalues of (5.10) located near the initial shift h (in the 
complex plane), are the fastest to converge. In Natarajan (1992), a procedure is 
described for adaptively generating a sequence of shifts, so that by repeating the 
Arnoldi procedure at each shift, the progress of the convergence of eigenvalues is 
effectively biased to the desired least-stable eigenvalues of (5.10). Some features of the 
present problem allow further computational efficiency to be obtained in the eigenvalue 
extraction procedure. First, since in practice the complex eigenvalues of (5.10) always 
appear as conjugate pairs, the computational effort can be confined to obtaining the 
eigenvalues with Im(a) 2 0. Second, a preliminary idea of the relevant eigenvalue 
distribution is always apparent from coarse mesh computations or from results 
obtained at nearby values of Re. With this information at hand, an initial shift can be 
specified near the leading eigenvalues in the spectrum. Aside from these leading 
eigenvalues, the remaining details of the spectrum are not particularly relevant to the 
linear stability arguments. Nevertheless, these details are useful in comparing the 
computational results obtained on different meshes, and in tracking the changes in the 
stability spectrum as Re is varied. 

Figure 5 illustrates this algorithmic procedure for a typical calculation, in this case 
for a sphere (Re = 100, m = 1). Here, the various numerals in the graph are located at 
the shift values and denote the order of their usage, and the symbols denote the 
corresponding converged eigenvalues computed at each shift value. The shift values are 
automatically generated by the algorithm, and are located in the regions of the complex 
plane where further unconverged eigenvalues might be found. As shown here, the 
sequence in which these shift values are used is biased towards extracting the least- 
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stable eigenvalues in the spectrum. In this particular representative run, about 26 
eigenvalues were obtained, with an initial Krylov basis set of dimension 70, and a 
convergence criterion of in the Arnoldi iterations (see Natarajan 1992). The 
accuracy of the converged eigenpairs was independently checked by evaluating the 
residual max,((A,,-a&) 51, and this quantity was always less than lo-@ for the 
reported results. More importantly, for the leading few eigenpairs, this residual was 
generally less than lo-", so that evey better accuracy is guaranteed for these. 

The effect of varying the location of the exterior computational boundaries, and of 
mesh refinement, is considered by examining the results for the m = 1 mode on the 
meshes L1, M1 and M2. Figures 6(a)  and 6(b) show results for the sphere (Re = 100) 
and circular disk (Re = 70). In each case, there are two leading eigenvalues (one real 
and one complex) which are well separated from the rest of the spectrum, and whose 
values are essentially identical on all three meshes. Some of the difference in the details 
of the interior parts of the spectrum from these three meshes is attributable to the 
automatic shift selection procedure which explores different regions of the spectrum in 
each case. Aside from this, the interior spectrum for L1 is seen to be noticeably sparser 
than for M1 and M2. The new eigenvalues appearing in the latter two cases might be 
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associated with any of three causes, viz. the location and the boundary conditions used 
at the inflow and outflow boundaries (particularly the latter), the details of the flow in 
the extreme far wake, or the mesh refinement. A cursory examination of some of the 
eigenfunctions corresponding to these interior eigenvalues does in fact show that their 
spatial variation is primarily near the outflow boundary outside the wake region, and 
tends to support the hypothesis that many of these modes do not have any physical 
implication (and hence would probably be eliminated by the ‘right’ outflow boundary 
condition). It is significant that these particular ‘spurious’ eigenvalues do not show any 
tendency towards becoming more unstable as Re is varied, so that the instability 
transitions can be ascribed to be entirely a consequence of the flow details on the body 
scale and near wake. 

The variation in the eigenvalue spectrum as a function of Re is considered in figure 
7 (a) for the sphere, and figure 7 (b)  for the circular disk. As Re is increased from small 
values, the two leading eigenvalues are seen to move towards the imaginary axis. In 
each case, the crossing first occurs for the real eigenvalue at Re, (which is a regular 
bifurcation point on the branch of base flows). Some detailed calculations show that 
Re, = 105 for the sphere, and 58.25 for the circular disk. Also, in each case, the other 
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FIGURE 8. Spatial form of the eigenfunctions at the bifurcation points for the sphere. 
(a) Re = 105, (b) Re = 138.75. 

leading complex eigenvalue also crosses into the right half-plane at a supercritical value 
Re, (which is a Hopf bifurcation point on the now-unstable branch of base flows), with 
the magnitude of the imaginary part of this crossing eigenvalue being given by a,. 
Again, detailed computations show Re, = 138.75, SZ, = 0.355 for the sphere, and 
Re, = 62.8, SZ, = 0.395 for the circular disk. 

The spatial form of the unstable eigenvector at the bifurcation points Re, and Re, 
is considered in figure 8 for the sphere, and in figure 9 for the circular disk. These are 
equispaced contour plots of the real parts of {u,,ug,uz} given in (5.6Ft5.9) for the 
unstable eigenvector (the corresponding imaginary parts are scaled and normalized 
differently, but have basically the same structure, and we omit their description here). 
At both Re, and Re,, the similarity in the results for the sphere and circular disk is quite 
striking, indicating that these two unstable modes have the same physical origin in the 
case of both bodies. At Re,, the variation of the unstable eigenvector is primarily in the 
near-eddy region of the axisymmetric base flow. At Re,, however, these variations have 
the spatially periodic downstream structure that is characteristic of an oscillatory wake 
instability (see, for example, Jackson 1987 for the case of flow past a cylinder). 

On the basis of the experimental results described in 86, we conjecture here that a 
stable supercritical branch of steady non-axisymmetric flow solutions will bifurcate 
from the base flow at Re,. Furthermore, we anticipate that a secondary Hopf 
bifurcation will occur on this branch at some supercritical value, say Re,,,, which will 
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FIGURE 9. Spatial form of the eigenfunctions at the bifurcation points for the circular disk. 
(a) Re = 58.25, (b) Re = 62.8. 

correspond to the critical Re for onset of time-dependence in the flow field. The 
unstable mode for this anticipated secondary Hopf bifurcation at Re,, , could be closely 
related to the mode responsible for the Hopf bifurcation computed here in the branch 
of base-flow solutions at Re,. This is reasonable if the amount of non-axisymmetric 
distortion in the bifurcating steady solution is sufficiently small (particularly in the far- 
wake region where this particular mode is excited), so that the original branch of base- 
flow solutions is still a good approximation to the supercritical flow field. This is 
especially likely for the circular disk since in this case Re, is only slightly greater than 
Re,. If this scenario is true, then the values Re, and 8, provide an estimate for the 
critical Reynolds number and frequency at the actual onset of time-dependence in the 
flow field. Further numerical computations are required to confirm all these 
conjectures, but the required effort lies outside the scope of the present investigation. 

Finally, we show the stability spectrum of the other azimuthal modes for a value of 
Re > Rec, where the m = 1 mode is already unstable. Figure 1O(a) shows the results for 
the sphere at Re = 120, and figure 10(b) for the circular disk at Re = 70. In the cases 
m = 0,2,3 investigated, there was no indication of any potentially unstable eigenvalues 
for these modes. 
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FIGURE 10. Stability spectrum of the azimuthal mode perturbations (m = 0,2,3) at a value of Re when 
the primary m = 1 mode is already unstable: (a) sphere, Re = 120, and (b)  circular disk, Re = 70. All 
results on the mesh M2. 

6.  Discussion 
Kim & Pearlstein (1990) have previously considered the numerical determination of 

the first instability mode for flow past a sphere, using spectral discretization methods 
for the base flow and linearized stability equations. They also show that the first 
unstable mode is non-axisymmetric with azimuthal wavenumber rn = 1 , but their 
description differs from ours since they report that the onset of the instability is 
through a Hopf bifurcation at a critical Re of around 87.5. The complicated nature of 
the numerical problem, and the different computational approaches used in these 
studies, make it difficult to resolve this discrepancy in a straightforward manner. 
Nevertheless, there are three particular aspects that would seem to favour our results 
in this paper. First, our results are more consistent with some experimental observations 
for flow past a sphere, described further in detail below, which clearly show the 
existence of stable axisymmetric flow solutions for some range of values of Re greater 
than their critical value of 87.5. In addition, these experiments also show steady non- 
axisymmetric flow solutions over another range of Re beyond this, and the existence 
of these solutions cannot be explained from their results. Second, the decay rates for 
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the stable perturbations reported by Kim & Pearlstein (1990) are systematically seen to 
have a smaller magnitude than might be expected on physical considerations. For 
example, in the case Re = 25, the least-stable eigenvalue for the mode with azimuthal 
wavenumber m = 0 is reported to have a decay rate around -9.0 x (see table 1 in 
their paper), and this is inconsistent with the expectation that this particular mode 
should be very strongly damped at such a low value of Re. Third, recent numerical 
computations in Tomboulides, Orszag & Karniadakis (1993) and Tomboulides (1993) 
for flow past a sphere, which we briefly describe below, provide a description of this 
instability that quantitatively confirms many aspects of our results. 

Some photographs of the wakes produced by a liquid drop settling in a surrounding 
immiscible liquid are shown in Magarvey & Bishop (1961a, b), and Magarvey & 
Maclatchy (1965). In these experiments, some dye was introduced into a droplet phase, 
which was then scrubbed from the interface by the flow into the region behind the drop, 
thereby rendering the structure of the flow in the wake region visible. Their results 
show that for low Re the flow consists of a toroidal recirculating eddy attached to the 
rear of the drop, with a single thread of dye in the trailing wake far downstream. At 
Re x 105 (where our calculations show the m = 1 mode to become unstable), they 
observed a transition to a steady non-axisymmetric flow with a double thread of dye 
in the trailing wake. We conjecture that this is the stable solution for supercritical 
values of Re, and that its spatial form can be obtained from the eigenfunction of the 
unstable m = 1 mode. This is consistent with the experimental results, but its full 
theoretical justification requires a nonlinear analysis of the stability of the entire class 
of bifurcating solutions (which consists of arbitrary linear combinations of the unstable 
m = 1 mode superposed with different azimuthal phases). This nonlinear analysis, 
however, lies outside the scope of the present work. 

To emphasize the relevance of the experimental results of Magarvey & Maclatchy 
(1965) to our numerical calculations, we note that the photographs in that paper show 
that the liquid drop does not undergo any discernable deformation from the spherical 
shape, and there is little evidence of any internal circulation within the drop during the 
motion. This is presumably due to the inhibiting effect of surface-active impurities, 
which form a rigid film at the liquid-liquid drop interface, and cause the drop to 
effectively behave as a solid sphere. This reasoning is supported by the fact that 
Winnikow & Chao (1966), in subsequent experiments with more purified liquid 
systems, have shown the importance of drop deformation, oscillation, and internal 
flow circulation, and have observed that, consistent with these experimental differences, 
the onset of separation and the subsequent instabilities in these systems was delayed to 
comparatively larger values of Re. 

Nakamura (1976), has conducted experiments with falling solid spheres, and has 
published photographs showing the transition from steady axisymmetric to steady 
non-axisymmetric flows. He reports that this transition takes place at Re x 95, with 
steady single-threaded as well as double-threaded wake flows for some range of values 
of Re > 95. 

Insofar as the onset of time-dependent motion in the flow is concerned, Magarvey 
& Maclatchy (1961 a, b) have observed wavy motions far downstream in the double- 
threaded wake flow as Re was increased beyond 135. Similarly, a time-dependent wavy 
motion has also been observed for Re M 135 in the wake of freely falling solid spheres 
(Goldburg & Florsheim 1966). We note that these values are close to Re, = 138.5 (see 
remarks below, and at the end of $ 5 ) .  As mentioned earlier, it would follow that the 
onset of time-dependence in the flow past a sphere (and equivalently, for flow past a 
circular disk) is through a Hopf bifurcation in the secondary branch of bifurcating 
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steady, non-axisymmetric transitional flows, This is in distinct contrast to the case of 
flow past a circular cylinder where the onset of time-dependence is directly through a 
Hopf bifurcation in the branch of base-flow solutions. At larger values of Re, this time- 
dependent wake instability eventually leads to an asymmetric vortex shedding in the 
form of a double row of vortex loops or rings. Further details of the high-Re flow in 
the vortex shedding regime for flow past spheres can be found in Achenbach (1974), 
Taneda (1978) and Sakamoto & Haniu (1990). 

In the case of circular disks, there are few rigorous experimental data that are 
relevant to the instability of the base flow. However, Willmarth et al. (1963) describe 
experiments with freely falling circular disks which are initially dropped in a 
‘broadside-on’ orientation. For Re < 50, the falling disks retained this particular 
orientation, and a steady axisymmetric recirculating wake was clearly visible behind 
the disk. For larger values of Re, the disks fell erratically with translational and 
tumbling motions. This behaviour is consistent with the computed instability of the 
base axisymmetric flow in this range of Re, and is also consistent with our expectation 
that for circular disks, the flow will become time-dependent at a supercritical value of 
Re only slightly beyond that for the first instability. 

The experimental results discussed above primarily concern freely falling spheres 
(including rigid drops) and circular disks, for which there is a mutual interaction 
between the body and the flow field around it. For example, the non-axisymmetric flow 
field at supercritical values of Re can lead to sideways forces and the lateral drifting of 
freely falling spheres (although in this case, the onset of the primary instability itself 
should not be affected), For circular disks, the effect of orientational perturbations 
during descent can interact with and modify the purely fluid dynamical instability 
studied here. The general agreement of the experiments with our computational results 
indicates that these interaction effects are likely to be moderate in practice, although 
this issue certainly deserves further investigation. Other rigorous experimental 
investigations with rigidly anchored spheres (see the extensive reviews in Kim & 
Pearlstein 1990; Sakamoto & Haniu 1990) unfortunately do not provide sufficient 
details of the near-eddy wake flow structure in the relevant range of Re for comparison 
to our computations. 

The instabilities described here have been studied independently, using a different 
but complementary approach, by Tomboulides et al. (1993) and Tomboulides (1993). 
This approach is based on a time-dependent code developed for studying the fully 
three-dimensional flow past a sphere. In this code, the dependent variables are Fourier- 
decomposed in the azimuthal direction, and expanded on a spectral element basis in the 
(r,z)-plane. By ‘turning off’ the non-axisymmetric (m =k 0) Fourier modes, they 
compute steady axisymmetric flow solutions (which are identical to our base flow 
solutions for the sphere). Then with the non-axisymmetric modes ‘turned on’, small 
perturbations are introduced and allowed to evolve in time. One such experiment at 
Re = 125, showed the rn = 1 component of the azimuthal velocity in the wake to 
initially grow exponentially and then eventually saturate at a new steady state. A 
background subdominant mode was also identified that decayed after a few 
oscillations. The structure of the dominant growing mode and the estimated growth 
rates of both the growing dominant and decaying subdominant mode are in close 
agreement with our eigenvalue computations. Another such experiment at Re = 150 
shows initially in the time evolution a dominant exponentially growing mode, and a 
subdominant oscillatory but exponentially growing mode. The estimated growth rates 
in this case are also in close quantitative agreement with our eigenvalue computations. 
It should be noted that their use of a time-dependent code in this fashion has the 
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advantage that the evolution of the instabilities can be followed into the highly 
nonlinear regime, and used to identify the stable, supercritical flow structure at that 
value of Re (which results as the end-product of the instability). 

The computing systems division at the IBM Thomas J. Watson Research Center is 
thanked for access to IBM RS/6000, Model 550 workstations on which the 
computations in this paper were performed. A. Tomboulides (Princeton University) is 
thanked for communicating his results to us. 
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